Usare parole gentili con le AI ne aumenta l’efficacia

Secondo uno studio di Google DeepMind, rivolgersi alle intelligenze artificiali con parole gentili aumenterebbe le loro performance.

5 min.

Usare parole gentili con le AI ne aumenta l’efficacia

Secondo uno studio redatto da alcuni ricercatori di Google DeepMind, rivolgersi alle intelligenze artificiali con parole ed espressioni gentili esattamente come si farebbe con un essere umano aumenterebbe le loro performance in modo considerevole. Per quanto possa sembrare strano e poco sensato trattandosi di macchine, la conclusione ha perfettamente senso considerate le specificità dei loro addestramenti.

Un respiro profondo

Questa scoperta arricchisce il variegato e complesso mondo del prompting, ossia l’insieme di input da fornire alle intelligenze artificiali per ottenere risposte. L’insieme infinito di combinazioni nella scelta dei codici o formule algoritmiche, parole, keyword o contesti forniti, modificano significativamente l’interazione con i modelli.

Il team di Google ha preso in esame per lo studio il modello di intelligenza artificiale PaLM 2, della stessa Google, sottoponendole una serie di problemi matematici di livello scolastico (ritenuti in questo genere ricerche i più oggettivi ed efficaci per calcolare la resa performativa).

La frase chiave individuata dal gruppo per condurre alla più elevata probabilità alla collaborazione è soprattutto una: “Fai un respiro profondo e affronta questo problema passo dopo passo“. Questo singolo specifico prompt ha portato ad un tasso di accuratezza dell’80,2% nei test rispetto a un’accuratezza di solo il 34% quando non c’erano prompt speciali. All’interno dello studio sono state testate anche altre frasi che hanno portato a risultati simili. L’espressione “pensiamo passo dopo passo“, ad esempio, ha condotto a performance considerevoli anche se meno accurate, pari al 71,8%.

I Meta-prompt

Non solo lo studio dimostra che semplici prompt linguistici possono migliorare significativamente le prestazioni di un modello AI, ma apre molteplici possibilità nello studio dei ‘meta-prompt‘ per guidare il comportamento dell’AI in varie applicazioni.

I meta-prompt sono istruzioni in linguaggio naturale che guidano i grandi modelli di linguaggio (LLM) nelle attività di risoluzione dei problemi. Sono progettate per essere più flessibili e comprensibili rispetto ai tradizionali prompt matematici, spesso basati su formule o algoritmi formali. Possono essere utilizzati per fornire agli LLM informazioni sui problemi da risolvere, come le variabili coinvolte, i vincoli e gli obiettivi.

Per quanto il loro utilizzo rappresenti già un automatismo diffuso nel nostro quotidiano utilizzo delle AI, sappiamo ancora incredibilmente poco sulle loro possibilità.

Perché un’AI capisce la gentilezza?

Non è realmente chiaro perché le frasi gentili creino una differenza così grande nelle prestazioni degli LLM. Questi ultimi non hanno la capacità di ragionare in termini strettamente umani, ovviamente, e si limitano a estrapolare contenuti linguistici da un enorme set di dati.

Si possono formulare alcune ipotesi. Una ragione per cui la gentilezza ha un effetto sulla resa algoritmica dei modelli linguistici può essere ricondotta al concetto di ‘apprendimento statistico’, alla base del loro addestramenti. I LLM vengono addestrati su enormi dataset di testo e codice, che includono sia esempi di testo scortese che di testo gentile. Quest’ultimo è probabilmente spesso associato a fonti affidabili, che sono più propense a fornire informazioni accurate. È possibile dunque che i modelli ‘imparino’ ad associare il testo gentile a risposte più corrette e complete, mentre il testo scortese a risposte più vaghe. In termini tecnici, il tutto può essere spiegato in termini di probabilità: se i modelli linguistici calcolano che la probabilità di generare una risposta accurata è maggiore con una domanda posta in modo gentile, tenderanno a ripetere quello schema.

L’approccio OPRO

Più in generale questo studio è uno dei primi esempi di una nuova metodologia del prompt elaborata da Google e nota come Optimization by PROmpting (OPRO). Il metodo mira a migliorare le prestazioni di grandi modelli linguistici (LLM) utilizzando il linguaggio naturale, quello di tutti i giorni.

Secondo le informazioni ad oggi disponibili, OPRO funziona utilizzando due grandi modelli di linguaggio: un LLM di valutazione e uno di ottimizzazione. Il primo valuta l’obbiettivo, il secondo calcola come raggiungerlo il più efficacemente possibile, in particolare confrontando le varie forme di linguaggio naturale di partenza.

L’LLM di ottimizzazione genera prompt a cui attribuisce dei punteggi in base alle migliori soluzioni. Queste vengono quindi ‘archiviate’ per il successivo round di ottimizzazione, che tende ad affinarsi sempre più.

Per gli utenti è solo un piccolo assaggio di un mondo vastissimo tutto da scoprire.


Ultime news


Data center nello spazio? Secondo Jeff Bezos è possibile

L'idea promossa da Bezos sta prendendo piede in tutto il…

Google ha lanciato la piattaforma Gemini Enterprise per le aziende

L'applicazione permette ai dipendenti, fra le altre cose, di creare…

L’ex premier britannico Sunak assumerà ruoli di consulenza in Microsoft e Anthropic

Le attività di Sunak saranno fortemente attenzionate da un ente…

L’imperialismo digitale di Israele e altre storie generative | Weekly AI

Weekly AI è la rassegna settimanale di AI news sulle…

In Evidenza


Arriva l’Italian Prompt Battle: il primo torneo italiano di prompting si terrà a Milano

Gli ideatori, Lucia Cenetiempo e Massimiliano Di Blasi, ci raccontano…

Scale AI conferma l’investimento di Meta e l’uscita del CEO Alexandr Wang

La società Scale AI ha confermato l'investimento di Meta e…

I modelli generativi inquinano l’informazione? La nostra intervista a Luciano Floridi | AI Talks #13

La nostra intervista a Luciano Floridi, già professore di filosofia…

L’AI ha fatto divorziare la capacità di agire e l’intelligenza: la nuova umanità secondo Floridi

Luciano Floridi, a teatro, ha esplorato la natura umana, contrapposta,…

Privacy policy| Cookie policy| Cookie setting| © 2025

Exit mobile version